Sharing Courses in Self-Instructional Language Programs through Online Conversation

Renewed for 2022/2023!

vassarwilliams

In an increasingly globalized world, students are seeking ways to learn languages that are not commonly taught at schools in the United States. While self-instructional language programs (SILP) afford many opportunities to explore lesser-taught languages like Hindi, Korean, or Swahili, the scope of each program is limited. A new online collaboration will allow each program to tap into resources that other colleges in the consortium have, e.g. native speakers in the community that can serve as tutors, or advanced level instruction in certain languages. Students will have additional opportunities to explore new paths within their liberal arts education.

Many of the colleges within the consortium offer some form of guided self-instruction of lesser-taught languages already. The new LACOL project will launch a collaboration between the Self-Instructional Language Programs at Vassar, and Williams College, using online synchronous classroom-to-classroom interaction. As Lioba Gerhardi, Vassar’s Coordinator of the Self-Instructional Language Program and Adjunct Assistant Professor of German Studies says:

By sharing resources, the partners will be able to increase the number of self-instructional languages available to students in an innovative and cost-effective manner.

The self-instructional component of each language course will remain unchanged. Each student will enroll for the course at their home institution. For speaking and listening practice, students will join conversational tutorial sessions at a partnering college via video conferencing software, such as Zoom.

Read More

Where’s my remote? Shared upper level math courses across schools

Presentation Slides: PDF

LACOL 2017 Session 7
Speaker: Steven J. Miller, Assoc. Professor of Mathematics, Williams College
Date & Location: June 16, Vassar College
Related Links:

As small institutions cannot always offer the classes our students need at the time they need them, several people at various LACOL schools have been exploring how to remotely share classes. While there many not be enough demand at any one place for a certain topic, by combining students from several schools we can have a course. There are many challenges, especially keeping the small liberal arts feel and having all students engaged. We report on the beta test, Miller’s Problem Solving class at Williams. We’ll discuss the technology used, emphasizing how the content was delivered and connections were made between students and faculty, and the challenges in coordinating a course across several campuses.

Exploration of Blended Course Offerings for Upper Level Mathematics

Prof. Stephan Garcia, Pomona College
Assoc. Prof. Stephan Garcia, Pomona College, co-lead of the LACOL ‘Upper Level Math’ project
(with Assoc. Prof. Steven Miller of Williams College, pictured above)

Update on Phase II: https://lacol.net/hu-garcia-math-stats-pilots

In September 2016, a team of mathematics faculty, technologists and instructional designers from six leading liberal arts colleges (LACOL member schools Amherst, Haverford, Pomona, Swarthmore, Vassar and Williams) are launching a new collaboration to explore blended course sharing for select topics in advanced mathematics. The goal of the project is to experiment with models for shared course delivery which can supplement residential classroom learning and expand curricular offerings for math majors. Inspired by some independent experimentation and brainstorming between faculty team leads, Assoc. Prof. Steven Miller at Williams College (pictured above) and Assoc. Prof. Stephan Ramon Garcia (pictured at right), a group of six mathematicians from across LACOL began talking about possibilities for a multi-campus collaboration in early 2016. These conversations eventually led to a full project proposal which gained strong support from LACOL’s Faculty and Administrative Advisory Councils. The project was officially approved in July 2016 as a two-phased initiative. In the first phase (academic year 2016/2017), a feasibility study is planned which will execute several experiments and “proofs of concept” involving online/blended course elements such as lecture capture, online coaching and problem solving sessions (synchronous and asynchronous) and peer mentoring. With support from the multi-campus project team, these efforts will be spearheaded by Miller at Williams College in connection with his Spring 2017 ‘Problem Solving’ course. In phase two (academic year 2017/2018), findings from phase one will be brought to bear in a pilot course offering, ‘Real and Functional Analysis’, taught by Garcia. In a fully realized vision, the course would be offered both face to face at Pomona, and also opened virtually to interested students at all LACOL campuses. Local faculty and support contacts at each campus would help ensure students experience the best aspects of on-campus and on-line liberal arts learning.

Since mathematics faculty at all LACOL schools already teach a variety of advanced topics, this project will investigate how online/blended sharing may expand access to a richer array of options to meet student interests.  Miller notes:

While liberal arts colleges excel in engaged faculty and personal interactions with students, we do not always have the course offerings available at larger institutions with graduate programs. Though often our students are ready for such classes, at each institution there are practical limits to offering them every year. Our goal is to increase the wealth and frequency of the advanced classes our students need, both for graduate study and to delve deeply in the subject.

Launch of the ‘Upper Level Math’ project has stirred excitement across the Consortium.  The math team’s work is seen as an opportunity to collaboratively experiment with emerging online/blended pedagogies that might be useful in a variety of disciplines. It is also a chance for the schools to explore related policy issues of faculty and student credit in the context of online/blended course delivery and consortial partnerships.  In considering these issues, the team will draw on experiences from peer institutions and other consortia who have been investigating these new models in a variety of ways.  Swarthmore College Professor of Cell Biology Liz Vallen, who evaluated the project in-depth as a member of LACOL’s Faculty Advisory Council, commented:

This [project] seems exactly aligned with LACOL’s goals as it is leveraging the consortium to increase course offerings and availability at partner institutions. The other big benefit of this work is that it is a concrete example that will be a great pilot experiment to see if this is something feasible and beneficial within the LACOL framework.

Read More

Digital. Dynamic. Mobile. The Graphics Codex by Prof. Morgan McGuire.

           The Codex  •  Nonlinear Content   •   Dynamic Layout  •  Self-Publishing  •  Coming Soon

I own and use the Graphics Codex. Is it a reference tool, a companion to a textbook, an alternative to a textbook, or a self-study guide? It can work in any of these roles, but I think it is in fact a new thing. It’s a thing we’ll be seeing a lot of…dollar for dollar, it’s the best scholarly information I have ever purchased.
Prof. Peter Shirley (University of Utah)
coauthor of Fundamentals of Computer Graphics

As befits its subject, the hot new graphics textbook isn’t available on paper. It is pure digital. It covers the essential undergraduate and graduate topics, works on any screen from phone to projector, and adapts to your favorite equation style, programming language, and APIs. It costs your students only $10, and will never be out of date because it updates every month for free.


1. The Codex

A chapter on light transport
A chapter on light transport

Pictured at top: A reference topic in the Graphics Codex

I wrote the Graphics Codex (http://graphicscodex.com) as a textbook and reference for computational graphics. It draws on two decades of teaching and research experience in academia at Brown University and Williams College and in industry at companies like Activision and NVIDIA. The materials lines up with the latest ACM-IEEE curriculum, on which I consulted.

Through 13 chapters and hundreds of encylopedia-like articles, it covers all of the typical graphics syllabus topics such as ray tracing, OpenGL and GPUs, and virtual reality. What sets the Graphics Codex aside from other educational resources is that it fully embraces its digital medium to provide:

  • Web (for Android, Windows, Linux, and OS X) and iOS App versions
  • Always up to date: free monthly updates with new content and corrections
  • Accessible to all: costs only USD $10 from Amazon or Apple
  • Nonlinear, searchable content
  • All diagrams licensed for reuse in the classroom and presentations
  • Reader-selectable programming language and math conventions
  • All code samples are copyable
  • Automatic layout adjustment for every screen

The Graphics Codex is designed either to stand alone as your only text or to work as a supplement alongside a traditional book. In the past ten years I’ve taught courses in each style, and provide a suggested syllabus mapping from chapters in the top three graphics textbooks to related topics in the Graphics Codex.

A huge advantage of the web and mobile app packaging is that students always have the book with them. I pull up topics on the projector in lecture in response to questions. Students easily check the authoritative resource for the course whether they’re programming in lab or completing a problem set in on a blanket in the quad on a sunny day.

Read More